M1.D

M2.C

M3.(a) (i) (Minimum) Speed (given at the Earth's surface) that will allow an object to leave / escape the (Earth's) gravitational field (with no further energy input)

Not gravity
Condone gravitational pull / attraction
B1
(ii) $1 / 2 m v^{2}=\frac{G M m}{r}$

B1
Evidence of correct manipulation
At least one other step before answer
B1
(iii) Substitutes data and obtains $M=7.33 \times 10^{22}(\mathrm{~kg})$
or
Volume $=\left(1.33 \times 3.14 \times\left(1.74 \times 10^{6}\right)^{3}\right.$ or 2.2×10^{19}
or $\rho=\frac{3 v^{2}}{8 \pi G r^{2}}$

C1

$3300\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$
(b) (Not given all their KE at Earth's surface) energy continually added in flight / continuous thrust provided / can use fuel (continuously)

B1
Less energy needed to achieve orbit than to escape from Earth's gravitational field / it is not leaving the gravitational field

B1
2

M4.(a) Idea that both astronaut and vehicle are travelling at same (orbital) speed or have the same (centripetal) acceleration / are in freefall

Not falling at the same speed
B1
No (normal) reaction (between astronaut and vehicle)
B1
2
(b) (i) Equates centripetal force with gravitational force using appropriate formulae
E.g. $\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}$ or $m r \omega^{2}$

B1
Correct substitution seen e.g. $v^{2}=\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{\text { anyvalue of radius }}$
(Radius of) 7.28×10^{6} seen or $6.38 \times 10^{6}+0.9 \times 10^{6}$
B1
$7396\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ to at least 4 sf Or $v^{2}=5.47 \times 10^{7}$ seen
(ii) $\quad \triangle \mathrm{PE}=6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1.68 \times 10^{4}(1 /(7.28$ $\left.\left.\times 10^{6}\right)-1 /\left(6.78 \times 10^{6}\right)\right)$

C1
$-6.8 \times 10^{10} \mathrm{~J}$
C1
$\Delta K E=0.5 \times 1.68 \times 10^{4} \times\left(7700^{2}-7400^{2}\right)=3.81 \times 10^{10} \mathrm{~J}$
C1
$\Delta K E-\Delta P E=(-) 2.99 \times 10^{10}(\mathrm{~J})$
A1
OR
Total energy in original orbit shown to be (-)GMm / $2 r$ or $m v^{2} / 2$ - GMm / r

C1
Initial energy
$=-6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1.68 \times 10^{4} /(2 \times 7.28 \times$ $\left.10^{6}\right)=4.59 \times 10^{11}$

C1
Final energy
$=-6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1.68 \times 10^{4} /(2 \times 6.78 \times$ $\left.10^{6}\right)=4.93 \times 10^{11}$
$3.4 \times 10^{10}(\mathrm{~J})$
Condone power of 10 error for C marks

M5.(a) Equatorial orbit \checkmark
Moving west to east
Period 24 hours \checkmark

ANY TWO

(b) $T^{\left(=\frac{2 \pi}{\omega}=\frac{2 \pi}{2.5(4) \times 10^{-4}}\right)}=2.5 \times 10^{4} \mathrm{~s} \quad$
(c) $\left.\quad \lambda\left(=\frac{c}{f}=\frac{3.0 \times 10^{8}}{1100 \times 10^{6}}\right)=0.27(3) \mathrm{m}\right) \checkmark$

$$
\theta\left(=\frac{\lambda}{d}=\frac{0.27(\mathrm{z})}{1.7}\right)=0.16(1) \mathrm{rad}=92^{\circ}
$$

$$
\text { (linear) } \text { width }=D \theta=12000 \mathrm{~km} 0.16(1) \mathrm{rad})=1.9(3) \times 10^{3} \mathrm{~km} \checkmark
$$

(d) Angle subtended by beam at Earth's centre

Satellite has to move through angle of 1900 / 6400 radian $=$ $0.29 \mathrm{rad} \boldsymbol{J}$
Fraction of one orbit $=0.30 / 2 \times 3.14 \checkmark$
Time $=0.048 \times 2.5 \times 10^{4}=1.19 \times 10^{3} \mathrm{~s} \Omega$
Time $=\frac{17}{380} \times 2.5 \times 10^{4}=1.18 \times 10^{3} \mathrm{~s}$
or
Circumference of Earth $=2 \pi \times 6370$

$$
=40023 \mathrm{~km}
$$

Width of beam at surface $=1920 \mathrm{~km}$

$$
\begin{aligned}
& =\text { beam width } / \text { Earth's radius }=1.9(3) \times 10^{3} / 6400 \text {) } \\
& 0.30 \mathrm{rad}\left(\text { or } 17^{\circ}\right) ~ \checkmark \\
& \text { Time taken }=\alpha / \omega=0.30 / 2.5(4) \times 10^{-4}=1.18 \times 10^{3} s \\
& =20 \mathrm{mins} \\
& \text { Alternative: } \\
& \text { Speed of point on surface directly below satellite }=\omega R \\
& \left.=2.5(4) \times 10^{4} \times 6400 \times 10^{3}\right) \\
& =1.63 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1} \checkmark \\
& \text { Time taken }=\text { width } / \text { speed } \\
& =1.93 \times 10^{6} \mathrm{~m} / 1.63 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1} \\
& =1.18 \times 10^{3} \mathrm{~s} \\
& \text { (accept } 1.2 \times 10^{3} \text { s or } 20 \mathrm{mins} \text {) } \\
& \text { or }
\end{aligned}
$$

$$
\begin{aligned}
\text { Time }=\frac{1920}{40023} & \times 2.48 \times 10^{4} \\
& =1180 \mathrm{~s}=19.6 \mathrm{~min}
\end{aligned}
$$

(e) Signal would be weaker \checkmark (as distance it travels is greater)

Energy spread over wider area/intensity decreases with increase of distance \checkmark

Signal received for longer (each orbit)
Beam width increases with satellite height/satellite moves at lower angular speed $\sqrt{ }$)

M6.(a) (i) force per unit mass
a vector quantity
Accept force on 1 kg (or a unit mass).
(ii) force on body of mass m is given by $F=\frac{G M m}{(R+h)^{2}}$, gravitational field strength $g\left(=\frac{F}{m}\right)=\frac{G M}{(R+h)^{2}} \quad \checkmark$

For both marks to be awarded, correct symbols must be used for M and m.
(b) (i)

$$
F\left(=\frac{G M m}{(R+h)^{2}}\right)=\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 2520}{\left(\left(6.37 \times 10^{6}\right)+\left(1.39 \times 10^{7}\right)\right)^{2}}
$$

$$
=2.45 \times 10^{3}(\mathrm{~N})
$$

to 3SF \checkmark
$1^{\text {st }}$ mark: all substituted numbers must be to at least 3SF. If 1.39×10^{7} is used as the complete denominator, treat as $A E$ with ECF available.

Page 6

(ii) $\quad F=m \omega^{2}(R+h)$ gives $\omega^{2}=\frac{2450}{2520 \times 2.03 \times 10^{7}} \checkmark$
from which $\omega=2.19 \times 10^{-4}\left(\mathrm{rad} \mathrm{s}^{-1}\right) \checkmark$
time period $T\left(=\frac{2 \pi}{\omega}\right)=\frac{2 \pi}{2.19 \times 10^{-4}}$ or $=2.87 \checkmark 10^{4} \mathrm{~s} \checkmark$
[or $F=\frac{m v^{2}}{R+h}$ gives $v^{2}=\frac{2.45 \times 10^{3} \times\left(\left(6.37 \times 10^{6}\right)+\left(13.9 \times 10^{6}\right)\right)}{2520}$
from which $v=4.40 \checkmark 10^{3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark$
time period $T\left(=\frac{2 \pi(R+h))}{v}\right)=\frac{2 \pi \times 2.03 \times 10^{7}}{4.40 \times 10^{3}}$ or $\left.=2.87 \times 10^{4} \mathrm{~s} \quad \checkmark \quad\right]$
$\left[\right.$ or $T^{2}=\frac{4 \pi^{2}(R+h)^{3}}{G M}$,

$$
=\frac{4 \pi^{2}\left(\left(6.37 \times 10^{6}\right)+\left(13.9 \times 10^{6}\right)\right)^{3}}{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}
$$

gives time period T $=2.87 \times 10^{4} \mathrm{~s} \checkmark$]

$$
=\frac{2.87 \times 10^{4}}{3600}=7.97 \text { (hours) } \checkmark
$$

number of transits in 1 day $=\frac{24}{7.97}=3.01(\approx 3) \checkmark$
Allow ECF from wrong F value in (i) but mark to max 4 (because final answer won't agree with value to be shown).
First 3 marks are for determining time period (or frequency).
Last 2 marks are for relating this to the number of transits.
Determination of $f=3.46 \times 10^{-5}\left(s^{-1}\right)$ is equivalent to finding T by any of the methods.
(c) acceptable use \checkmark
satisfactory explanation \checkmark
e.g. monitoring weather or surveillance:
whole Earth may be scanned or Earth rotates under orbit or information can be updated regularly
or communications: limited by intermittent contact
or gps: several satellites needed to fix position on Earth
Any reference to equatorial satellite should be awarded 0
marks.

M7.C

M8. D

