1

2

[1]

M3.(a) (i) (Minimum) Speed (given at the Earth's surface) that will allow an object to leave / escape the (Earth's) gravitational field (with no further energy input) Not gravity Condone gravitational pull / attraction

(ii)
$$\frac{1}{2}mv^2 = \frac{GMm}{r}$$

Evidence of correct manipulation At least one other step before answer

(iii) Substitutes data and obtains $M = 7.33 \times 10^{22}$ (kg) or Volume = $(1.33 \times 3.14 \times (1.74 \times 10^6)^3$ or 2.2×10^{19} $\sigma r \rho = \frac{3v^2}{8\pi Gr^2}$

3300 (kg m⁻³)

A1

C1

Β1

B1

B1

	(b)	adde	given all their KE at Earth's surface) energy continually d in flight / continuous thrust provided / can use fuel inuously)		
			B1		
			energy needed to achieve orbit than to escape from i's gravitational field / it is not leaving the gravitational		
			B1		2
					2
M4.(a	a) lo		at both astronaut and vehicle are travelling at same (orbital) spe- e (centripetal) acceleration / are in freefall Not falling at the same speed	ed or have the	;
			Not failing at the same speed	D 4	
				B1	
		No (r	normal) reaction (between astronaut and vehicle)		
				B1	2
	(b)	(i)	Equates centripetal force with gravitational force using appropriate formulae E.g. $\frac{GMm}{r^2} = \frac{mv^2}{r}$ or $mr\omega^2$		
				B1	
			Correct substitution seen e.g. $v^2 = \frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{\text{any value of radius}}$		
				B1	
			(Radius of) 7.28 × 10 ⁶ seen or 6.38 × 10 ⁶ + 0.9 × 10 ⁶		
				B1	
			7396 (m s ⁻¹) to at least 4 sf Or $v^2 = 5.47 \times 10^7$ seen		

2

[7]

 $\Delta PE = 6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1.68 \times 10^4 (1 / (7.28))$

4 [10

[10]

M5.(a) Equatorial orbit ✓

(ii)

Moving west to east \checkmark

Period 24 hours ✓

PhysicsAndMathsTutor.com

4

(b)
$$T \left(=\frac{2\pi}{\omega}=\frac{2\pi}{2.5(4)\times10^{-4}}\right) = 2.5\times10^4 \text{ s }\checkmark$$

(c)
$$\lambda \left(=\frac{c}{f} = \frac{3.0 \times 10^8}{1100 \times 10^6}\right) = 0.27 \text{ (3)m })\checkmark$$

 $\theta \left(=\frac{\lambda}{d} = \frac{0.27(2)}{1.7}\right) = 0.16(1) \text{ rad} = 92 \circ \checkmark$

(linear) width = $D\theta$ = 12000 km 0.16(1) rad) = 1.9(3) × 10³ km \checkmark

(d) Angle subtended by beam at Earth's centre

= beam width / Earth's radius = $1.9(3) \times 10^3 / 6400$) 🗸

0.30 rad (or 17°) 🗸

Time taken = α / ω = 0.30 / 2.5(4) × 10⁴ = 1.18 × 10³ s

= 20 mins 🗸 Alternative: Speed of point on surface directly below satellite = ωR $= 2.5(4) \times 10^{-4} \times 6400 \times 10^{-3}$) = 1.63 × 10³ m s⁻¹ ✓ *Time taken = width / speed* $= 1.93 \times 10^{\circ} m / 1.63 \times 10^{\circ} m s^{-1} \checkmark$ = 1.18 × 10³ s (accept 1.2 × 10³ s or 20 mins) ✓ or Satellite has to move through angle of 1900 / 6400 radian = 0.29 rad 🗸 Fraction of one orbit = $0.30/2 \times 3.14$ / Time = $0.048 \times 2.5 \times 10^4 = 1.19 \times 10^3$ s \checkmark 17 Time= $360 \times 2.5 \times 10^4 = 1.18 \times 10^3$ s or Circumference of Earth = $2\pi \times 6370$ = 40023 km Width of beam at surface = 1920 km 🖌

2

1

3

Signal would be weaker \checkmark (as distance it travels is greater) (e)

Energy spread over wider area/intensity decreases with increase of distance 1

Signal received for longer (each orbit) ✓

Beam width increases with satellite height/satellite moves at lower angular speed \checkmark)

[13]

4

2

3

force per unit mass 🗸 **M6.**(a) (i) a vector quantity 🗸 Accept force on 1 kg (or a unit mass).

> force on body of mass *m* is given by $F = \frac{GMm}{(R+h)^2} \checkmark$ (ii)

 $g\left(=\frac{F}{m}\right)=\frac{GM}{(R+h)^2}$ gravitational field strength

> For both marks to be awarded, correct symbols must be used for M and m.

2

(b) (i)
$$F\left(=\frac{GMm}{(R+h)^2}\right) = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 2520}{\left(\left(6.37 \times 10^6\right) + \left(1.39 \times 10^7\right)\right)^2} \checkmark$$
$$= 2.45 \times 10^3 \text{ (N) } \checkmark \qquad \text{to 3SF } \checkmark$$

~

1st mark: all substituted numbers must be to at least 3SF. If 1.39×10^7 is used as the complete denominator, treat as AE with ECF available.

(ii)
$$F = m\omega^2 (R + h)$$
 gives $\omega^2 = \frac{2450}{2520 \times 2.03 \times 10^7} \checkmark$

from which ω = 2.19 × 10⁻⁴ (rad s⁻¹) \checkmark

time period
$$T\left(=\frac{2\pi}{\omega}\right) = \frac{2\pi}{2.19 \times 10^{-4}}$$
 or $= 2.87 \checkmark 10^4 \text{ s} \checkmark$

$$[\text{or } F = \frac{mv^2}{R+h} \text{ gives } v^2 = \frac{2.45 \times 10^3 \times ((6.37 \times 10^6) + (13.9 \times 10^6))}{2520} \checkmark$$

from which v = 4.40 \checkmark 10³ (m s⁻¹) \checkmark

time period $T\left(=\frac{2\pi(R+h)}{v}\right) = \frac{2\pi \times 2.03 \times 10^7}{4.40 \times 10^3}$ or $= 2.87 \times 10^4$ s \checkmark]

$$[or T^2 = \frac{4\pi^2 (R+h)^3}{GM} \checkmark$$

$$=\frac{4\pi^2 ((6.37 \times 10^6) + (13.9 \times 10^6))^3}{6.67 \times 10^{-11} \times 5.98 \times 10^{24}} \checkmark$$

gives time period T = $2.87 \times 10^4 \text{s}$ /

$$= \frac{2.87 \times 10^4}{3600} = 7.97 \text{ (hours) }\checkmark$$

24

number of transits in 1 day = $\overline{7.97}$ = 3.01 (\approx 3) \checkmark

Allow ECF from wrong F value in (i) but mark to max 4 (because final answer won't agree with value to be shown). First 3 marks are for determining time period (or frequency). Last 2 marks are for relating this to the number of transits. Determination of $f = 3.46 \times 10^{-5}$ (s⁻¹) is equivalent to finding T by any of the methods.

(c) acceptable use ✓ satisfactory explanation ✓ e.g. monitoring weather or surveillance: whole Earth may be scanned or Earth rotates under orbit or information can be updated regularly
or communications: limited by intermittent contact or gps: several satellites needed to fix position on Earth

Any reference to equatorial satellite should be awarded 0

marks.

2 [14]

M7.C

M8. D

[1]

[1]